

Diet & Nutrition Summary Report

Demo Account

Report date: 05 January 2024

Powered by

Table of contents

How this works

Summary

Your Optimal Diet

Overview of results

Details

Next steps

- Macronutrients
- Fats Breakdown
- Sensitivities
- Vitamins
- Minerals
- Eating Habits

DISCLAIMER

This report does not diagnose this or any other health conditions. Please talk to a healthcare professional if this condition runs in your family, you think you might have this condition, or you have any concerns about your results.

How this works

Our Health Reports analyze how your DNA influences your health. We then use this analysis to give you personalized risk estimates and recommendations.

Similarly, our Trait Reports look at how your DNA influences your traits.

Your DNA is like an instruction manual — it contains a lot of information. You can think of it as a blueprint for your body.

Genetic variants are parts of DNA that differ from person to person. Some can make you more vulnerable to certain health issues, while others may influence traits such as eye color.

In total, we analyze up to 83M genetic variants.

We use artificial intelligence and machine learning to analyze all this information. We then summarize your results as a risk score or display it on a gauge.

Summary

The gauge shows you the ratio of three main macronutrients—fat, carbs, and protein—in your optimal diet.

The percentage means how much of your energy needs you should meet with that nutrient. For example, 40% for fat means that 40% of your energy should come from fat. On a typical 2,000-calorie diet, that's 800 calories from fat or about 89 g of fat per day (1 g of fat provides 9 calories).

Macronutrients

The bar for each macronutrient tells you how well you respond to it. Each bar has up to three segments, corresponding to a worse, typical, and better response to that macronutrient.

The gauge for each macronutrient displays a percentage of your daily energy needs you should meet with that nutrient. For example, 40% for carbs means that 40% of your energy should come from carbs. On a typical 2,000-calorie diet, that's 800 calories or 200 grams of carbs per day (1 gram of carbs provides 4 calories).

X %			
Carbohyd Your result will	rates show here.		
Hunter-gatherer	Intermediate	Farmer	

Food sensitivities

For food sensitivities, the bar tells you how likely you are to be sensitive to a particular nutrient or food component. Each bar has two segments, corresponding to lower (typical) and higher sensitivity.

Vitamins, Minerals & Omega-3s

For vitamins, minerals, and omega-3s, the bar tells you about your needs for a particular nutrient. Each bar has two segments, corresponding to typical and increased needs. People with increased needs for a certain nutrient may benefit from getting more of that nutrient from their diets.

Vitamin D Your result will show h	ere.	
Typical	Increased	

Eating Habits

For eating habits, the bar tells you how likely you are to have a particular food habit. Each bar has two segments, corresponding to lower and higher likelihood of having a particular habit.

Some things to keep in mind:

- The scores/gauges use the latest scientific studies. But they are not perfect and will change as the models improve.
- Not everyone with risk variants will develop a health condition.
- Genetics is not the whole story. Your health is most often a combination of genetics, lifestyle, and environmental factors. Great news, as this means that you can often change your lifestyle to lower your risk.
- Results might be more accurate for some ethnic groups than others. This depends on the studies used in each report.
- People without risk variants can also develop health conditions.
- It's important to work with your doctor to better understand your risks. Our reports do not diagnose or treat any health condition. They are not a substitute for medical advice. If you're diagnosed with a certain health condition, follow your doctor's advice.

Summary

Have you ever lost weight, only to gain it right back? Or tried a diet that worked great for your friend but didn't seem to make a difference for you? It isn't your fault! There is no such thing as a one-size-fits-all diet.

Diets plans often focus on controlling the amount of macronutrients you eat: carbohydrates, fats, and protein. However, they don't account for a major factor: genetics!

Depending on your genes, you may need to adjust your macros based on your ability to process them. Taking this personalized approach to your nutrition is how you can build a diet plan that will help you feel your best!

This report shows you how you process each macronutrient, helping you choose a diet that makes sense for you and your genes! The chart on the right shows your optimal macronutrient ratio. The percentages show you how much of your daily energy intake should come from each macro.

We also check your genes and give you personalized, actionable advice for:

- Choosing the right types of dietary fat
- Getting enough vitamins and minerals
- Addressing food sensitivities
- Improving your eating habits

25% of your daily calories 33 grams per day	35% of your daily calories Min 105 grams per day *	40% of your daily calories 120 grams per day
Dietary Fat	Dietary Protein	Carbohydrates
Better Typical Response Worse Response Response	Better Typical Response Worse response	Better Response Typical Response Worse Response

* **FRIENDLY TIP** If you're struggling to reach your macros, just make sure you prioritize your **protein intake** and consume your minimum amount per day.

Your Optimal Diet

The following is your optimal diet based on your genetic results

Mediterranean

The <u>Mediterranean diet</u> is based on the traditional cuisine from the Mediterranean regions such as Greece, Spain, southern Italy, and southern France. It gained popularity when researchers noticed significantly **lower heart disease rates** and higher life expectancy among Mediterranean folks [R, R].

This diet doesn't actually represent the way people eat in the Mediterranean regions today, given the growing influence of Western dietary habits. A proper Mediterranean diet abounds in [R, R]:

- Vegetables
- Fruits
- Whole grains
- <u>Olive oil</u>

The following foods are eaten in moderation [R, R]:

- Fish and seafood
- Eggs and poultry
- Dairy

Red meat and sweets are eaten sparingly $[\underline{R}, \underline{R}]$.

The Mediterranean diet provides a balanced ratio of carbs, fat, and protein. It's one of the healthiest diets due to a diversity of **whole foods** that deliver essential nutrients such as [R]:

- Vitamins and minerals
- Polyphenols and other antioxidants
- Healthy unsaturated fats
- Dietary fiber

Overview of Your Results

Macronutrients

Dietary	Fat	
Likely worse	e response to dietary f	fat
Better Response	Typical Response	Worse Response

Sensitivities

Alcohol Sensitivity

Likely typical sensitivity to alcohol

Typical	Higher

Histamine Intolerance

Typical likelihood of histamine intolerance

Typical likelihood	More likely

Caffeine Sensitivity

Likely lower caffeine sensitivity

Minerals

Zinc Likely typical need for zinc		Magnesium Likely typical need for magnesi	um	Iron Likely typical need for iron	
Typical Need	Increased Need	Typical need	Increased need	Typical need	icreased need
Potassium		Selenium		Calcium	

Potassium

Your Results in Details

Macronutrients

Macronutrients are nutrients your body needs in large amounts. Many diet plans focus on controlling the amount of macronutrients you eat: carbohydrates, fats, and protein. Research shows that people have different abilities to process macronutrients. Find out how you process each macronutrient below. Adjusting your macros based on your genes may help improve your weight, blood sugar, cholesterol levels, and more!

Response

Dietary Protein

Proteins are essential building blocks that help make muscles, hormones, and more. They can also be used for energy. Healthy protein sources include poultry, fish, eggs, legumes, whole grains, and dairy [R, R].

Your Result

Your Gene Table

We tested several genetic variants because they affect how your body uses proteins. Some people carry variants that may cause more weight loss on a high-protein diet [R, R, R, R, R].

GENE	VARIANT	GENOTYPE
GLP1R	rs 6923761	GG
FABP2	rs1799883	TT
CNDP2	rs4891558	TT
FTO	rs1558902	AT
NTN5	rs838147	GA
CNDP1	rs 7244647	СТ
MTNR1B	rs10830963	CC
ADRB3	rs4994	ΑΑ
ST6GAL1	rs 1501299	GG
TFAP2B	rs987237	ΑΑ
CLOCK	rs3749474	тт

TNF	rs 1800629	GG

Dietary Fat

Fats are an important source of energy. Fats are divided into saturated and unsaturated fats. Unsaturated fats, including olive oil and omega-3 fatty acids, are considered healthier [R, R].

Your Result

Based on the gene variants we looked at, you may have a worse response to dietary fat. A high-fat diet is likely to increase your weight and cholesterol levels.

You may thrive on a diet with moderate or low amounts of fat. When eating fat, make sure to choose healthier fats from whole food sources.

Healthy fats food sources

- Avocado
- Olive Oil
- Fatty fish (salmon, sardines, herring, etc.)
- Nuts (walnuts, almonds, hazelnuts, etc.)
- Seeds (chia seeds, flax seed, pumpkin seeds, etc.)

Your Gene Table

We tested several genetic variants because they affect how your body uses fat. Some people carry variants that cause them to gain more weight on high-fat diets $[\underline{R}, \underline{R}]$.

GENE	VARIANT	GENOTYPE
FABP2	rs1799883	Π
FCER1G	rs5082	AG
FTO	rs9939609	AT
STAT3	rs8069645	GG
STAT3	rs744166	GG
STAT3	rs 2293152	cc
CETP	rs5882	GG
NLRC5	rs 708272	GG
CD36	rs 1984112	ΑΑ
NSMAF	rs3808607	GG
CLOCK	rs 1801260	ΑΑ
AGT	rs699	AA
APOA1	rs670	CC
ABCA1	rs2230806	CC
APOC1	rs 405509	GT
STAT6	rs 1799986	СТ
AHSG	rs 4917	TC
PPARA	rs 135549	TC
АРОВ	rs693	GA

rs7903146

СС

TCF7L2

Carbohydrates

Carbohydrates are the main source of energy in our modern diets. Carbs include simple carbs like candy, honey, and fruit juice, and healthier complex carbs like whole grains and vegetables [R].

Your Result

This means carb-rich foods such as whole grains aren't likely to spike your blood sugar. People with your variant who eat more whole grains and fiber may be at a lower risk of diabetes $[\underline{R}, \underline{R}, \underline{R}]$.

You may thrive on a high-carb diet. Try focusing on complex carb sources, such as whole grains, legumes, and vegetables. You should still limit your intake of sugars and refined carbs.

Healthy carbs food sources

- Root vegetables (sweet potatoes, carrots, beets, etc.)
- Legumes (beans, chickpeas, lentils, peas, etc.)
- Whole grains (brown rice, wheat, barley, oats, rye, etc.)
- Pseudo-grains (quinoa, amaranth, buckwheat, etc.)
- Fruits and vegetables

Fats Breakdown

Fats in our diet are divided into two major groups: saturated and unsaturated fat. Omega-3 fatty acids are one of the healthiest unsaturated fats. We all have different abilities to break down and use these fats! For some people, adjusting the amount of certain types of dietary fats may help them feel better and experience better health.

Saturated Fat Likely worse response to saturated fat

Omega-3 Likely typical need for omega-3s

Typical need	Increased need

Unsatura	ated Fat
Likely better	response to unsaturated fat

Saturated Fat

The main sources of saturated fat in our diet are meat and dairy. Increased intake of saturated fat has been linked to heart disease and high cholesterol [R].

Your Result

Based on the genetic variants we looked at, you likely have a worse response to saturated fat. Even moderate amounts of saturated fat may increase your weight and cholesterol levels.

You may benefit from choosing unsaturated over saturated fat. Also, it's important to avoid saturated fat from processed foods and choose healthy whole food sources instead.

Your Gene Table

We tested several genetic variants because they affect how your body uses saturated fat. Some people carry variants that cause them to gain weight when eating more saturated fat [R, R, R].

GENE	VARIANT	GENOTYPE
CETP	rs5882	GG
TLR4	rs5030728	GG
AGT	rs699	ΑΑ
APOA1	rs670	CC
ABCA1	rs2230806	CC
FCER1G	rs5082	AG
STAT3	rs8069645	GG
STAT3	rs744166	GG
STAT3	rs2293152	CC
LPL	rs328	CC
LPL	rs13702	тт

LPL	rs1121923	GG
CD36	rs1984112	ΑΑ
CLOCK	rs1801260	ΑΑ
SIDT2	rs5070	GG
FTO	rs9939609	AT
STAT6	rs 1799986	СТ
PPARA	rs135549	TC
APOC1	rs405509	GT
АРОВ	rs693	GA

Omega-3

Omega-3 fatty acids are some of the healthiest fats we can eat. They help lower inflammation and protect the heart, brain, and eyes. Good sources of omega-3s include fatty fish, flaxseed, chia seeds, and walnuts [<u>R</u>, <u>R</u>].

Your Result

Your Gene Table

We tested several genetic variants because they affect how your body uses omega-3 fatty acids. Some people carry variants that are linked to lower omega-3 levels [<u>R</u>].

GENE	VARIANT	GENOTYPE
WDR70	rs 7736605	GG
CITED2	rs10499212	GG
TNFSF10	rs11914753	CC
COL11A1	rs11164689	GG
AHI1	rs2092556	TT
AHI1	rs4896151	CC
AHI1	rs1547079	TT
G2E3	rs 7149414	GG
PRR11	rs2291193	GG
FADS2	rs 174579	CC
MYOM1	rs 949306	GG

/	rs6553050	СТ
MAP7	rs13191834	TC
SNX17	rs4665972	СС
PIK3C2A	rs 7949405	AC
SYCP2L	rs953413	AG
/	rs2129588	СТ
ADRA1A	rs558455	AG
/	rs11235247	GG
MACROD2	rs12481689	ΑΑ

Unsaturated Fat

Unsaturated dietary fat is considered healthier than saturated fat. Good sources of unsaturated fats include olive oil, nuts and seeds, fatty fish, and avocados [<u>R, R</u>].

You may thrive on a diet rich in unsaturated fat.

Your Gene Table

We tested several genetic variants because they affect how your body uses unsaturated fat. Some people carry variants linked to a lower weight when consuming unsaturated fat [R, R, R, R, R].

GENE	VARIANT	GENOTYPE
PPARG	rs1801282	CC
FADS2	rs174550	Π
RFC4	rs17300539	GG
FAAH	rs324420	CA
ABTB1	rs782444	Π
TPRA1	rs6787155	CC
PPARA	rs1800206	CC
ABTB1	rs549662	ΑΑ
PODXL2	rs 3773155	ΑΑ
ANKK1	rs1800497	GG
MGLL	rs9877819	GA
PON1	rs662	СТ
RFC4	rs266729	CG
IQCJ	rs1962071	CA
ABTB1	rs1466571	GA
ABTB1	rs 13076593	CG
ADAM17	rs10495563	AG
ABTB1	rs6776142	СТ

rs1800849

rs1805094

UCP3

LEPR

GG

GG

Sensitivities

Have you ever felt that certain foods like wheat or dairy make you feel sick? If so, you're not alone! Many people suffer from food sensitivities, and there's a genetic basis for many of them. For some people with a food sensitivity, changing the diet can make an incredible impact! We tested your genes for some of the most common food sensitivities. Read below to find out more about your results.

Gluten Sensitivity (Non- Celiac) Likely typical gluten sensitivity	Food Allergies More likely to have food allergies	Lactose Intolerance Likely lactose tolerant
Typical Higher	Typical Likelihood More Likely	Likely Tolerant Likely Intolerant
Alcohol Sensitivity Likely typical sensitivity to alcohol	Histamine Intolerance Typical likelihood of histamine intolerance	Caffeine Sensitivity Likely lower caffeine sensitivity
Typical Higher	Typical likelihood More likely	Lower Higher

t Ser	nsitivity	
y typic	al sensitivity to	salt
	Typical	Higher
	турісаї	High

Gluten Sensitivity (Non-Celiac)

Gluten is a protein found in some common grains and their products like wheat, rye, and barley. Common foods with gluten include pasta, flour, crackers, pastries, and bread. In people with gluten sensitivity, gluten consumption causes digestive issues and other adverse effects. They may need to follow a strict gluten-free diet $[\underline{R}, \underline{R}]$.

Your Result

Typical

Higher

Food Allergies

Food allergies are reactions that occur when eating a food that is normally harmless. Reactions can range from annoying to life-threatening. Common reactions include flushing, itching, and stomach upset. Common food allergies are allergies to peanuts, seafood, milk, and eggs $[\underline{R}, \underline{R}]$.

Your Result

more likely to be sensitive to certain foods, such as peanuts, seafood, milk, and eggs. You may be more likely to have digestive, respiratory, or other symptoms after consuming these foods.

Consider talking to your doctor about further allergy testing if you feel like you have symptoms of food allergies.

Your Gene Table

We tested several genetic variants to determine your risk for food allergies. Up to 80% of differences in people's chances of having food allergies may be due to genetics [R].

GENE	VARIANT	GENOTYPE
KIZ	rs17664036	CC
LRRC32	rs 7936434	CC
HLA-DQA2	rs9 275596	СТ
HLA-DRA	rs 7192	GT
LRRC32	rs2212434	Π
TLR1	rs2101521	GG
FHIT	rs142617341	CC
FLG	rs1933064	AA
IQCE	rs1036504	тс
STAT6	rs4759044	СТ
GSTP1	rs1871042	СТ

MS4A2	rs556917	TA
TMEM243	rs 6942407	GA
HLA-DPA1	rs 9277630	CC
SPINK6	rs9325071	ΑΑ
RBFOX1	rs59325236	GG
LINGO4	rs12123821	CC
HLA-DQA2	rs9271588	Π
SERPINB10	rs12964116	AA
SERPINB10	rs 1243064	TT

Lactose Intolerance

Lactose intolerance means a person cannot digest lactose, a sugar found in dairy. To be able to digest lactose, you need an enzyme called lactase. We produce less and less of this enzyme as we age. Lactase production also depends on genetics [\mathbf{R} , \mathbf{R}].

Your Result

Alcohol Sensitivity

In people who are sensitive to alcohol, alcohol breakdown is inefficient and causes the buildup of a toxic compound called acetaldehyde. Symptoms of alcohol sensitivity include flushing, nausea, headache, and fast heart rate [R, R].

Your Result

Histamine Intolerance

Histamine-rich foods include certain fish, fermented foods, processed meats, and some fruits and vegetables. Frying food increases its histamine levels. People with histamine intolerance may have digestive issues and other uncomfortable symptoms after eating foods containing histamine [R, R, R].

Your Result

Typical likelihood

More likely

Your Gene Table

We tested several genetic variants because they affect the way your body processes histamine [\mathbb{R} , \mathbb{R} , \mathbb{R}].

GENE	VARIANT	GENOTYPE
AOC1	rs10156191	TC
AOC1	rs2268999	TA
AOC1	rs2052129	TG
AOC1	rs1049793	CG
AOC1	rs1049748	TC
AOC1	rs2071517	GA
AOC1	rs2071514	GA
HNMT	rs1050891	AA
HNMT	rs2071048	СТ
HNMT	rs11558538	CC
AOC1	rs1049742	CC

Caffeine Sensitivity

Some people can't break down caffeine well. They may experience increases in blood pressure or unpleasant symptoms after drinking coffee. These symptoms can include feeling jittery, difficulty sleeping, headaches, and muscle twitches [\mathbf{R} , \mathbf{R}].

Your Result

Salt Sensitivity

People who are salt sensitive will experience a bump in blood pressure when they eat salty foods. This happens because their kidneys function a bit differently. It is partially due to genetics, but can also be linked to other factors, such as age, diet, and chronic health conditions $[\underline{R}, \underline{R}, \underline{R}]$.

Your Result

Continue to enjoy salt in moderation if you don't have high blood pressure. You should still try to limit your salt intake to one teaspoon per day.

Your Gene Table

We tested several genetic variants because they affect the way your body handles sodium from salt $[\underline{R}]$.

GENE	VARIANT	GENOTYPE
ACE	rs4343	GG
PRKG1	rs7905063	Π
PRKG1	rs7897633	AA
FGF5	rs16998073	AA
SCNN1G	rs4073930	Π
SCNN1G	rs4073291	AA
SCNN1G	rs7404408	CC
SCNN1G	rs5735	Π
TNFRSF1A	rs11614164	AA
SCNN1A	rs4764586	AC
SCNN1G	rs4299163	CG

BCAT1	rs 7961152	CC
POC1B	rs2681472	ΑΑ
SLC8A1	rs11893826	GG
MTHFD2	rs10177833	CC
SLC4A4	rs10022637	Π
SCNN1G	rs4499238	TC
SCNN1A	rs 3741914	Π

Vitamins

Vitamins are a group of nutrients that your body needs in relatively small amounts to maintain health. Vitamins are essential nutrients, meaning that we can't make them in our bodies in sufficient amounts. Thus, we need to get all the vitamins from our diet. Some people are genetically inclined to need a little more of a certain vitamin than others—that's why we created this section! Read below to learn how your genes may be affecting your vitamin needs.

Vitamin B6

Vitamin B6, or pyridoxine, is important for nervous and immune system health. It also supports brain development. Vitamin B6 is found in a variety of foods, and deficiency is uncommon $[\underline{R}, \underline{R}]$.

Your Result

Your Gene Table

We tested several genetic variants because they affect your vitamin B6 levels $[\underline{R}, \underline{R}, \underline{R}]$.

GENE	VARIANT	GENOTYPE
NBPF3	rs4654748	CC
NBPF3	rs1697421	TC
ALPL	rs1256341	TC
ALPL	rs1772719	ΑΑ
ALPL	rs1256335	ΑΑ

Vitamin E

Vitamin E is the name given to a group of antioxidant nutrients. There are eight forms of vitamin E. This vitamin is a crucial antioxidant and helps with immune function $[\mathbb{R}]$.

Your Result

Your Gene Table

We tested several genetic variants because they affect your vitamin E levels [R].

GENE	VARIANT	GENOTYPE
PAFAH1B2	rs12272004	CC
SIDT2	rs964184	CC
SCARB1	rs11057830	GG
CYP4F2	rs 2108622	тс

Vitamin D

You get vitamin D by absorbing sunlight through your skin and by eating foods rich in vitamin D. Vitamin D is important for strong bones, mood, immunity, and heart health [**R**].

Your Result

Make sure to get at least the recommended daily amount of **600 IU** per day. Try to spend more time outside, too! Sunlight exposure helps your body produce vitamin D.

Your Gene Table

We tested several genetic variants related to vitamin D to determine your need for it [R].

GENE	VARIANT	GENOTYPE
GC	rs2282679	GT
GC	rs7041	AC
/	rs558560635	GG
/	rs189918701	GG
/	rs375984409	GG
/	rs201561609	Π
GC	rs11723621	GA
ADH1B	rs1229984	CC
COPB1	rs10832289	AT
PDE3B	rs201501563	СТ
RRAS2	rs117206369	Π
COPB1	rs148514005	CC
/	rs561089663	GG
PSMA1	rs577185477	Π
/	rs557657187	GG
COPB1	rs117913124	GG
PDE3B	rs188480917	CC
GC	rs565277381	TT
/	rs567415847	GG
/	rs529640451	CC

Vitamin B12

Vitamin B12, or cobalamin, is a nutrient that helps make energy, support nerve function, build DNA, and form red blood cells. Vitamin B12 is plentiful in animal products like meat, fish, eggs, and dairy. Vegetarians and vegans sometimes have difficulty getting enough vitamin B12 $[\underline{R}, \underline{R}]$.

Your Result

Your Gene Table

We tested several genetic variants related to vitamin B12 to determine your need for it. Some people have variants that make it harder to absorb vitamin B12 from food [R].

GENE	VARIANT	GENOTYPE
FUT2	rs602662	GG
CUBN	rs11254363	AA
FUT5	rs3760775	GG
FAM240C	rs12478296	CC
FUT2	rs 516246	CC
/	rs1513859	AA
SLC25A2	rs3749779	AA
FOXK1	rs314590	AA
LAMA4	rs76190642	GG
CHODL	rs34988353	AA
ARAP2	rs142554771	тт

LAMA4	rs144505878	GG
C1QL3	rs79770840	GG
RGS18	rs114973754	CC
ADGRL3	rs545255284	TT
C160RF82	rs139645308	CC
POU3F3	rs 188141458	GG
KCNK2	rs 72761546	TT
KCNK2	rs 189754522	ΑΑ
PCSK2	rs141477158	GG

Folate (Vitamin B9)

Vitamin B9, also known as folate or folic acid, is an essential nutrient. It helps protect DNA from damage, support heart and brain health, and make red blood cells. Folate is vital for a healthy pregnancy [R, R].

Your Result

For most adults, that's **400 mcg** of folate per day. You can get enough of this vitamin by eating a variety of fruits and vegetables.

Riboflavin (Vitamin B2)

Riboflavin (vitamin B2) helps our cells create energy. It's also important for growth and development, nervous system function, and skin and eye health $[\underline{R}, \underline{R}]$.

Your Result

Vitamin C

Vitamin C, or ascorbic acid, is an antioxidant that helps reduce oxidative stress. It also helps make collagen, a protein that builds connective tissue. Vitamin C is important for immune function, heart and lung health, and wound healing $[\underline{R}, \underline{R}]$.

Your Result

Vitamin A

Vitamin A is a nutrient important for vision, immunity, gut health, and skin health. Animal foods like beef liver, fish, and cheese contain active vitamin A. Plant foods like sweet potatoes, pumpkin, and carrots contain provitamin A, which our bodies turn into vitamin A [<u>R, R</u>].

Your Result

Your Gene Table

We tested several genetic variants because they affect your vitamin A levels [R, R].

GENE	VARIANT	GENOTYPE
BCO1	rs7501331	TC
FFAR4	rs10882272	TC
BCO1	rs12934922	AA

Vitamin K

Vitamin K is essential for blood clotting and bone health. Good sources of vitamin K include leafy greens, soy products, carrots, and pumpkin. People on certain blood thinners (warfarin) should maintain a steady vitamin K intake due to potential interactions [R]

Your Result

Your Gene Table

We tested several gene variants that influence vitamin K levels. They may play a role in vitamin K breakdown, fat metabolism, and more [R, R, R].

GENE	VARIANT	GENOTYPE
/	rs2192574	TT
SIDT2	rs964184	CC
CTNNA2	rs4852146	Π
CYP4F2	rs2108622	тс
CYP4F11	rs12609820	СТ
ATG12	rs6862909	GG
CDO1	rs6862071	ΑΑ
CDO1	rs 4122275	GG
KCNK9	rs 4645543	CC
KCNK9	rs2199565	GG
KCNK9	rs7018214	ΤΤ

Minerals

Minerals are elements that our bodies need to survive and thrive. Minerals are essential nutrients, which means we must get them from our diet. However, people may have higher needs for certain minerals based on their genes. The four most important minerals that humans need are listed below. Some people may need more of a certain mineral due to genetics. In such cases, getting more of that mineral may help!

Zinc	Magnesium	Iron
Likely typical need for zinc	Likely typical need for magnesium	Likely typical need for iron
Typical Need Increased Need	Typical need Increased need	Typical need Increased need
Potassium	Selenium	Calcium
Likely typical need for potassium	Likely typical need for selenium	Likely typical need for calcium
Typical need Increased need	Typical Need Increased Need	Typical Need Increased Need

Zinc

Zinc is an essential mineral. Your body uses it to defend against disease, protect DNA from damage, heal wounds, and control blood sugar. Some of the best sources of zinc include shellfish, pork, beef, and beans $[\underline{R}, \underline{R}]$.

Your Result

Your Gene Table

We tested several genetic variants because they affect your zinc levels $[\underline{R}, \underline{R}, \underline{R}]$.

GENE	VARIANT	GENOTYPE
CA2	rs1532423	GG
SORBS3	rs 4872479	GG
SLC5A6	rs11126936	GG
SCAMP5	rs2120019	TT
NBDY	rs 4826508	TT

Magnesium

Magnesium is required for DNA and protein production, muscle and heart function, and immune function. Foods rich in magnesium include leafy greens, nuts, and seeds $[\underline{R}, \underline{R}, \underline{R}]$.

Your Result

Your Gene Table

We tested several genetic variants because they affect your magnesium levels $[\underline{R}, \underline{R}]$.

GENE	VARIANT	GENOTYPE
VIPR1	rs11718502	CC
CSTA	rs1801725	GG
FGFR2	rs1219515	GG
ASAP1	rs 72728275	СА
CDKL2	rs6838240	Π
MTMR7	rs3764796	TG
PAPSS2	rs1969821	GG
DLK1	rs4905994	Π
THBS3	rs 4971100	GG
RTL1	rs915364	AC
ALPK1	rs2074379	GA
PHACTR2	rs2073214	TC
CANT1	rs11891	AG
PAPSS2	rs 791888	TG
CDKL2	rs6852678	СТ
TRPM6	rs113607577	GG
TRPM6	rs11144134	Π
HDHD2	rs117060920	GG
THBS3	rs4072037	СТ
MECOM	rs448378	GG

Iron

Iron is an essential mineral. It helps make hemoglobin, a protein that red blood cells need to carry oxygen throughout the body. In this way, iron supports energy production and fights fatigue [R, R, R].

Your Result

Your Gene Table

We tested several genetic variants related to iron to determine your need for it. Some people have variants that make it harder to absorb iron from food [R].

GENE	VARIANT	GENOTYPE
TMPRSS6	rs228916	ΤΤ
TMPRSS6	rs4820268	AG
TMPRSS6	rs855791	GA
IGLV4-60	rs987710	AG
MAPRE1	rs 146680938	CC
CDH19	rs181670562	CC
CLDN11	rs113286612	GG
DTWD2	rs2442120	CC
SLC24A2	rs142401741	GG
IRX2	rs62330869	ΑΑ
ERG	rs117910189	TT

ZFAT	rs2315834	CC
HFE	rs 1799945	CC
SCGN	rs115809796	AA
NOTCH4	rs41270472	AA
TMC5	rs4780797	GA
CNTN5	rs 1398168	GA
CARMIL1	rs 111722075	CC
GK2	rs 12641027	TC
NCKAP5	rs7588567	π

Potassium

Potassium is an essential mineral. It supports our heart, kidneys, muscles, and more. The recommended potassium intake is 4,700 mg/day. Foods rich in this mineral include vegetables, potatoes, legumes, and dried fruits [R, R, R].

Your Result

Your Gene Table

We tested a lot of gene variants that affect potassium levels. They may play a role in potassium transport, kidney function, and more [\mathbb{R} , \mathbb{R} , \mathbb{R}].

GENE	VARIANT	GENOTYPE
RGS7	rs183294212	CC
LURAP1	rs111512785	AA
PRG4	rs141261421	GG
NVL	rs 78473436	AA
HMCN1	rs138057810	AA
CASQ2	rs 117999962	GG
FMO2	rs184768578	AA
SSBP3	rs182561930	CC
PTPRC	rs141793725	TT
ETV3	rs 75349367	GG
OLFM3	rs140864890	ΑΑ

GALNT2	rs80258856	CC
BEND5	rs139642127	GG
FYB2	rs143507390	GG
SSBP3	rs117932658	Π
RRAGC	rs144130357	CC
DMBX1	rs78451089	GG
/	rs80302144	CC
/	rs7548119	GG
RGS13	rs12071444	GG

Selenium

<u>Selenium</u> is a mineral that supports reproduction, thyroid health, antioxidant protection, and more. Adults should be getting **55 micrograms** of selenium per day. Good sources include **Brazil nuts**, meat, fish, and eggs [**R**].

Your Result

Your Gene Table

We tested several gene variants that influence selenium levels. They may play a role in selenium transport, storage, and metabolism [R, R].

GENE	VARIANT	GENOTYPE
ARSB	rs9 21943	CC
BHMT	rs 7700970	CC
ВНМТ	rs11960388	Π
AGA	rs1395479	AC
COG1	rs 891684	GG

Calcium

Calcium is the main component of your teeth and bones. It's also important for muscle and nerve function. Dairy products are an important source of calcium [R, R, R].

Your Result

Your Gene Table

We tested several genetic variants related to calcium to determine your need for it. Some people have variants that make it harder to absorb calcium from food [\mathbb{R} , \mathbb{R} , \mathbb{R}].

GENE	VARIANT	GENOTYPE
PRSS3	rs10814041	CG
AMT	rs34240317	ΑΑ
IDH3A	rs2028548	тс
FAM216B	rs9525667	СТ
GAL	rs880610	GG
SEM1	rs4448201	СС
HLA-DQA1	rs2071805	СТ
CDC42SE1	rs2864700	TT
HBZ	rs10794639	AA
GALNT3	rs10204976	GG
SMOC1	rs 3742909	GG

SP7	rs144680237	СТ
CPED1	rs3779381	AG
ARL4C	rs12151790	GG
ZBTB40	rs34414754	CA
DOK6	rs17184557	TT
ETS2	rs11088458	GA
CTNNB1	rs389264	СТ
CCDC170	rs4869744	TC
CPED1	rs10242100	AG

X Eating Habits

You may be surprised to learn that some of the eating habits you have are affected by your genes! Eating is a complex behavior, but scientists have been able to link eating habits with certain genes. Read below to learn more about what your genes may be influencing!

Sugar Cravings				
More likely to crave sugar				
Less likely	More likely			

Snacking	
More likely to snack	
Loss Likoly	More Likely

Tendency To Overeat

Hunger is the body's signal to eat. When we eat, we experience satiety - the feeling of fullness between meals. However, some people tend to overeat and feel hungry more often. Genetics may play a role in this.

Your Result

more likely to feel hungry after meals and to overeat. You may also be more likely to eat in the absence of hunger.

Increased physical activity and a Mediterranean-style diet may help counteract the effect of this variant on body weight $[\underline{R}, \underline{R}, \underline{R}, \underline{R}, \underline{R}, \underline{R}]$.

Your Gene Table

We tested one <u>FTO</u> gene variant to determine whether or not you have a tendency to overeat. Some people have a variant linked to an increased appetite and higher food intake.

GENE	VARIANT	GENOTYPE
FTO	rs9939609	ΑΤ

Sugar Cravings

Do you have a sweet tooth? Or do you find some foods unpleasantly sweet? Differences in the genes that code for our taste receptors may affect our preference for sweets. People who have less sensitive sweet receptors may have a "sweet tooth". They may prefer sweet foods and eat more of them [\mathbb{R} , \mathbb{R}].

Your Result

Your Gene Table

We tested several genetic variants to determine how likely you are to have a sweet tooth. People with a sweet tooth may have less sensitive sweet taste receptors on their tongues [R, R, R]!

GENE	E VARIANT		
FUT2	rs838133	ΑΑ	
/	rs 56404116	AG	
/	rs13347339	TT	
/	rs13182470	СС	
SERPINA1	rs11568814	СС	
GOLGA8B	rs2433267	AA	
CLMP	rs 17127163	AA	
ORC5	rs10953405	AA	
WSCD1	rs35253088	Π	
RELN	rs 62485870	Π	
CST7	rs62215296	GG	

NOTCH1 rs710411		AA		
/	rs2815675	CC		
FSCB	rs537022264	ΑΑ		
AGMO	rs12699747	TC		
ATP10B	rs4552669	AG		
ATP10B	rs10037124	TG		
SLC2A2	rs5400	GG		
ALDH2	rs671	GG		
ITGA4	rs 13029040	CC		

Snacking

Snacking is eating or drinking something between meals. Some people may snack more than others. This may partly be due to genetics. Genes involved with snacking may influence hormones linked to appetite and hunger [\mathbb{R} , \mathbb{R} , \mathbb{R}].

Your Result

Try to avoid snacks with unhealthy fats and added sugar and salt. Instead, choose snacks higher in protein, fiber, and healthy fats. Try to portion your snack instead of eating it from the package [R, R, R].

Your Gene Table

GENE	VARIANT	GENOTYPE
HES6	rs2304672	GG
LEP	rs 791607	AA
LEPR	rs2025804	GG
LIN7C	rs925946	TG
MC4R	rs17782313	ΤΤ
LRRC4	rs4577902	AA
SH2B1	rs 7498665	AA

Next Steps

Remember, your genes only tell one important part of your health story!

Now that you've seen your DNA-based results for this health topic, let's take a look at other contributing factors.

Your lab results

Your lab results are impacted by the combined effect of your genes, environment and lifestyle.

Lab tests will give you the best picture of your current health status, while your genes provide insight into your health predispositions and which recommendations are best for you.

(!)	Selenium	45 mcg/L	() 63	120	180	250	400	11 Aug 2023
\odot	Iron	27 umol/L		10.71	25		33.93	10 Jun 2023
\odot	Insulin, Fasting	78 pmol/L		6	36	118	150	10 Jun 2023